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Abstract

A single sub-psychotomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate 

(NMDA) receptor antagonist, produces a fast-acting antidepressant response in patients suffering 

from major depressive disorder. Depressed patients report alleviation of core symptoms within 

two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two 

weeks. The rapidity of ketamine action implies that major symptoms of depression can be 

alleviated without substantial structural plasticity or circuit rewiring. Therefore, the ability of 

ketamine to exert a rapid effect provides a unique opportunity to elucidate the types of acute 

synaptic plasticity changes that can be recruited to counter depression symptoms.
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Introduction

In the last decade, clinical studies have demonstrated that intravenous administration of a 

low dose of ketamine triggers a rapid antidepressant response in patients with major 

depression [1–3] including treatment resistant depression [2,3] and bipolar depression [4,5]. 

These studies have bolstered the hope that patients that do not respond to traditional 

antidepressants, which target monoaminergic neurotransmission and typically take several 

weeks to show efficacy, can be treated rapidly with ketamine. Antidepressants with a rapid 

onset of action are particularly needed for patients at increased risk for suicide, as the long 

time frame required for the efficacy of classical antidepressants limits their use in 

emergency circumstances.
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Ketamine is a non-competitive glutamate N-methyl-D-aspartate (NMDA) receptor 

antagonist that binds to the open channel pore. Recent studies demonstrated that the 

antidepressant-like action of ketamine could be modeled in animals [6–8]. These studies also 

showed that similar to classical antidepressants, ketamine requires expression of brain-

derived neurotrophic factor (BDNF) [6,9]. However, while ketamine triggered acute 

translation of BDNF protein was essential for its rapid antidepressant effects [6], ketamine 

action was not sensitive to inhibition of transcription and ketamine administration did not 

elicit an increase in transcription of BDNF mRNA arguing against the role of transcription 

dependent processes [6].

Classical antidepressants take several weeks to show efficacy. To explain their mechanism 

of action, there has been significant interest in long-term processes that rewire neuronal 

circuits. There is some evidence that such long-term circuit level reorganization may require 

neurogenesis and depend on transcriptional alterations as well as chromatin remodeling [10–

12]. In contrast, ketamine exerts its action within hours, shortly after its clearance, thus 

pointing towards a fundamentally different mechanism that may nevertheless require BDNF 

signaling albeit in a much faster time frame. Therefore, the ability of ketamine to exert a 

rapid effect indicates that major symptoms of depression can be alleviated without any 

requirement of substantial circuit rewiring. This basic aspect of ketamine action provides a 

unique opportunity to elucidate the types of acute synaptic plasticity changes that can be 

recruited to counter depression symptoms. In addition, the NMDA receptor blocking action 

of ketamine is a biophysically well-characterized process, which makes it possible to 

identify specific signal transduction events that link NMDA receptor blockade by ketamine 

to subsequent elevation in BDNF levels.

How does blockade of NMDA receptors elicit plasticity?

Ketamine as well as other NMDA receptor antagonists produce rapid antidepressant-like 

effects in mouse behavioral models that are dependent on rapid protein synthesis of BDNF 

[6]. This study demonstrated that rapid synthesis of BDNF requires deactivation of 

eukaryotic elongation factor 2 (eEF2) kinase and decreased phosphorylation of eukaryotic 

elongation factor (eEF2). Experiments in animal models showed that ketamine-mediated 

blockade of NMDA receptors at rest deactivates eEF2 kinase, resulting in a reduction of 

eEF2 phosphorylation and desuppression of BDNF translation [6,13,14]. These effects were 

not mimicked by alterations in neuronal activity levels in vivo, suggesting that spontaneous 

glutamate release and subsequent NMDA receptor activation that occurs independent of 

action potentials comprise the primary target for low dose ketamine action [6]. In agreement 

with this premise, inhibitors of eEF2 kinase have been shown to trigger fast-acting 

antidepressant-like effects in mice, while ketamine does not produce an antidepressant effect 

in eEF2 kinase knockout mice [14]. These findings support the hypothesis that suppression 

of spontaneous neurotransmission mediated NMDA receptor activation is necessary and 

sufficient to trigger antidepressant-like responses [15,16]. A key role for BDNF in mediating 

antidepressant efficacy has previously been established by multiple studies [17]. Previous 

work has demonstrated that BDNF is required for behavioral responses to classical 

antidepressants [18]. BDNF expression in the hippocampus is increased by antidepressants 

[19] and BDNF deletion in the hippocampus attenuates antidepressant behavioral responses 
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[20]. Moreover, intraventricular or intrahippocampal BDNF infusion mimic antidepressant 

behavioral effects in rodents [21–23]. In addition to BDNF, experiments have shown that the 

rapid antidepressant effect of ketamine requires activation of BDNF’s canonical receptor 

TrkB, indicating potential involvement of intracellular signaling cascades downstream of 

TrkB activation are required for the maintenance effects of ketamine [6]. For instance, 

BDNF is a potent endogenous activator of mTOR, which has also been suggested to underlie 

the antidepressant action of ketamine [7].

These studies have also shown that acute suppression of spontaneous NMDA receptor 

mediated neurotransmission potentiates synaptic responses in the CA1 regions of rat and 

mouse hippocampus that depend on eEF2 kinase function, BDNF expression, and increased 

surface AMPA receptors [14]. These findings demonstrated an unexpected dynamic impact 

of spontaneous glutamate release on synaptic efficacy. The key role for blockade of 

spontaneous NMDA receptor-mediated neurotransmission was validated by a recent set of 

experiments aimed to delineate the functional difference between ketamine and memantine 

[13]. Memantine is another noncompetitive NMDA receptor antagonist that has failed to 

mediate an antidepressant response in depressed patients in clinical trials [24–26]. Recent 

work has highlighted the essential role played by block of NMDA receptor responses at near 

resting membrane potentials in the presence of physiological levels of extracellular Mg2+ in 

the antidepressant action of ketamine. Experiments demonstrated that memantine, despite 

being a robust blocker of NMDA receptors when the pore is unoccupied with Mg2+, which 

is more likely to occur during activity, was a poor blocker of resting NMDA currents 

activated by spontaneous release events [13]. The dichotomy between memantine and 

ketamine also extended to the downstream signaling pathways as memantine application in 

vivo did not elicit a significant decrease in signaling through eEF2 kinase and failed to 

trigger the increase in BDNF protein expression. This direct comparison of memantine and 

ketamine in preclinical models provided a critical validation of the “resting NMDA receptor 

block” hypothesis as it could explain a clinical finding that has been difficult to reconcile 

with global NMDA receptor blockade as the mechanism for antidepressant efficacy of 

ketamine.

Synaptic circuits that mediate the antidepressant action of ketamine

The increasing number of studies focused on elucidating ketamine’s action on synaptic 

transmission present significant opportunities for conceptual advance by delineating the 

molecular basis of rapid antidepressant responses. In addition, clinical studies that assess the 

impact of alternative NMDA receptor blockers as well as other means of altering 

glutamatergic signaling on triggering antidepressant responses provide promising directions 

for new treatments [27–29]. However, the exact synaptic circuitry involved in mediating the 

rapid antidepressant responses of ketamine remains unclear. Recent studies have focused on 

hippocampus and prefrontal cortex as potential sites of action for ketamine [6,7]. Several 

lines of evidence point to a hippocampal localization. First, eEF2 dephosphorylation seen 

after ketamine administration is most prominent in hippocampal CA1 as well as dentate 

gyrus dendritic regions. Second, electrophysiological experiments uncovered robust 

potentiation of synaptic responses recorded in the CA1 region of ketamine application in 

vitro. Finally, administration of eEF2 inhibitors caused a decrease in eEF2 phosphorylation 
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and an upregulation of BDNF selectively in hippocampus [6]. The potential involvement of 

the hippocampal locus is consistent with earlier results that pinpointed hippocampus, in 

particular the dentate gyrus region, for the action of classical antidepressants [20]. Although, 

these data demonstrate the involvement of hippocampus with ketamine mediated 

antidepressant responses, there is also evidence that ketamine administration alters 

synaptogenesis in prefrontal cortex [7]. Future experiments are needed to selectively 

manipulate key signal transduction elements required for ketamine action in subregions of 

the hippocampus as well as other brain areas to uncover the synaptic circuitry, in particular 

where eEF2 kinase acts to mediate the rapid antidepressant action of NMDA receptor 

blockade. While it remains possible that ketamine may act more globally altering synaptic 

efficacy in a broad range of circuits to exert its antidepressants effects, it is important to bear 

in mind that the site of ketamine action may be distinct from other brain regions such as the 

lateral habenula or nucleus accumbens associated with the pathophysiology of depression 

[30,31].

Synaptic mechanisms that may underlie long term antidepressant efficacy

Recent preclinical studies on ketamine action did not only address how ketamine may 

trigger an antidepressant effect but also provided clues on potential mechanisms that may 

maintain this effect in the long term. Ketamine mediated suppression of spontaneous NMDA 

receptor mediated neurotransmission results in a transient elevation in BDNF levels that 

returns to baseline within 24 hours after ketamine administration [6]. However, in patients as 

well as in animal models antidepressant responses remain detectable days to sometimes 

weeks beyond this initial time point [1,3,6,8]. This finding indicates that in future studies it 

will be critical to see whether specific changes in synaptic efficacy constitute the key end 

point in antidepressant action and if the increase in BDNF is only required as the initial 

triggering factor for this long term effect. According to this premise, triggering long term 

increases in synaptic efficacy may be sufficient to elicit antidepressant responses bypassing 

the need for BDNF. To address this question it will be important to test whether potentiation 

of synaptic responses detected after ketamine application is maintained throughout the time 

course of the antidepressant response. If synaptic potentiation is indeed sufficient to elicit 

antidepressant responses, it will be critical to better understand how this antidepressant 

driven plasticity overlaps with more traditional forms of Hebbian plasticity. For instance, a 

recent study demonstrated that acute serotonergic modulation could potentiate 

temporoammonic pathway input onto CA1 pyramidal neurons without altering Schaffer 

collateral synapses onto the same neurons [32]. However, this potentiation could be 

occluded by the canonical long-term potentiation elicited at the same synapse suggesting a 

shared mechanism [32]. Long term activity blockade or long term alterations in synaptic 

plasticity, similar to synaptic events elicited by ketamine, lead to homeostatic changes in 

synaptic strength by altering the prevalence of silent synapses [33]. There is also evidence 

that application of low doses of ketamine alters subsequent synaptic plasticity in 

hippocampal synapses [34]. Furthermore, recently reported metabotropic, Ca2+ influx 

independent, actions of NMDA receptors may also play a role in the maintenance of 

antidepressant effects as these putative metabotropic effects of NMDA receptors are spared 

by use-dependent channel blockers such as MK-801 or ketamine [35]. Taken together, these 
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recent findings on the synaptic plasticity events detected after antidepressant administration 

warrant further mechanistic scrutiny of the synaptic changes triggered by fast acting 

antidepressants to uncover the mechanism they share with canonical forms of synaptic 

plasticity identified at the same synapses.

The gradual reversibility of ketamine’s antidepressant response also suggest that substantial 

permanent alterations in synapse numbers or connectivity are not likely involved in the 

antidepressant response but rather reversible functional alterations in synaptic plasticity are 

required. Purely functional increases in synaptic efficacy can be eventually reversed by 

activation of counteracting signaling pathways. Antidepressant response may eventually 

decline as homeostatic mechanisms that readjust synaptic gain in response to sustained 

changes in global levels of synaptic activity. Uncovering these counteracting mechanisms 

will be critical to assess the precise requirements for eliciting a reliable and sustainable 

antidepressant response with minimal clinical interventions [36].

Conclusion

Recent studies on rapid antidepressant action presented a productive merger of basic studies 

on synaptic transmission and plasticity with reverse translational approaches to uncover 

mechanisms of action for clinically validated rapid antidepressants. Identification of 

synaptic substrates that mediate an antidepressant response will offer new leads toward the 

development of robust, reliable fast acting antidepressants. The initial insight from this work 

suggests that acute alterations in synaptic efficacy may be sufficient to alleviate core 

depressive symptoms. Overall, information attained from these preclinical investigations 

will provide new insight to the molecular synaptic substrates that may be therapeutic targets 

and thus impact individuals with a number of neuropsychiatric disorders.
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Highlights

Ketamine triggers a rapid antidepressant response in patients with major depression

Ketamine elicits rapid translation of brain-derived neurotrophic factor (BDNF)

Rapid BDNF translation requires deactivation of eukaryotic elongation factor2 

kinase

Ketamine, but not memantine, blocks resting NMDAR-mediated neurotransmission 

in Mg2+

Block of resting NMDAR-mediated synaptic responses is essential for ketamine 

action
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